浅析博物馆三维全景数字智能视频融合系统(2)

admin 2023-11-26 10:02 新闻资讯

  运动阴影常被误划为目标造成错误的目标分割,综合考虑颜色信息、空间信息和纹理信息,利用阴影的颜色、空间和纹理属性在关注区域中确定其造成的颜色形变,通过使用颜色形变补偿和纹理校正进行阴影抑制。对于产生的噪音和小部分目标缺失,将利用基于数学形态学的图像处理方法,快速的滤除和补偿。

  2.三维重建融合

  三维重建融合就是将二维视频信息实时的重建到三维模型之上,通过三维虚拟观测,实现对真实场景多角度、全方位的实时立体监控。要实现这一目标,需要首先计算视频参数,然后进行图像重建,从而实现无形变、不失真的全景融合。

  在计算机图形学中,物理相机或摄像机可以用透视投影模型描述,借用相机投影矩阵可以算出世界坐标中任意点在最终投影图像上的像素坐标,现实相机或摄像机也是通过投影矩阵的变换将真实场景拍摄成图像和视频的。反之,如果已有图像和视频数据,也可以通过投影矩阵反向投影回三维场景模型上,从而实现不失真的实时三维渲染。通常相机的投影矩阵是未知的,而已知的是视频数据和三维场景模型。

  首先,检测出二维视频和三维场景模型的特征点,实时拼接融合就是要选用自动准确的计算算法实现实时图像配准。在基于特征的图像配准中,特征描述符用来对两幅图像的特征进行相似性度量,合适的特征描述符对于建立图像之间的配准映射关系和提高配准精度具有重要意义。为了适应图像的尺度变化,提高配准算法的精度,引入多尺度匹配算法。

  其次,通过自动或半自动的特征匹配,反算从三维场景模型到二维视频的投影变化矩阵以及精确三维物理相机参数。在三维场景中虚拟出投影相机,再将视频动态投射到场景的表面从而完成时空的融合。

  最后,通过对视频数据进行分析,检测分离出前景目标。借用相机参数,目标的像素坐标可以转化成三维位置信息,从而能在三维位置上对动态目标实施实时动态三维建模。在融合过程中,背景信息只需投影在静态的三维场景模型上,而前景目标投影在三维动态重建的目标模型上,即实现无形变、不失真的全时空融合。该项技术可以实现任意多路的实时视频处理。

  3.视频图像归一化

  通过上述步骤实现了大规模摄像机视频数据在空间和时间上拼接融合。由于视频数据可能来自于不同品牌的摄像机,或是使用不同的光度参数,例如,曝光时间、白色平衡、伽马校正、传感器的灵敏度等,这些将直接产生不一致的颜色数据。此外,由于视频监控建设时间的不同,必然造成视频图像在色彩、亮度、饱和度和对比度等方面的情况也不同。为了达到更好的视觉拼接融合效果,需要将摄像机图像进行归一化处理,提高视频画面的一致性。具体分以下两个步骤:

  (1)视频色彩校准

  将Macbeth彩色影像板放置在监控区域内,对每个摄像机的标定参数进行增益和偏移,最大限度地减少对比度和黑度,并确保线性响应和白场景的平衡。

  (2)视频的色彩传递

  归一化目标是一致的色彩反应,而不是绝对的色彩精确度。因此,无需将每个摄像机视频匹配成标准色彩,而是通过色彩传递对摄像视频进行两两色彩匹配。具体的说,是将一幅视频图像的颜色特征传递给另一幅视频图像,使目标图像具有与源图像相似的色彩。假设两个视频取自不同视角,但有固定的光照和不同的光度参数。在Lambertian假设场景中,两个视频图像之间存在全局一致颜色映射。由于两幅图像中有不同区域,采用自动采集样本的图像颜色传递方法,利用特征点的方法把目标图像和源图像分别分成对应的子块,根据对应的子块颜色直方图匹配,计算出最优的色彩传递函数。对于不同视角、不同光照和光度参数的视频,由于摄像视频之间不存在全局一致颜色映射,给出一组色彩传递函数,以人工辅助的目测方法,选取最优结果。在全局一致颜色映射存在的情况下,在RGB三个色彩通道中,RMS误差预计不超过5%。在全局一致颜色映射不存在的情况下,到达肉眼观察没有明显色差。

  4.全时空立体可视化展示

  支持重点区域大场景监控、关键路径自动巡航、二维和三维信息关联显示、摄像机反向关联、球机协同追视和历史事件大场景回溯。

上一篇:宇视2023合作伙伴大会:AIGC+AIoT,改变旧格局、发现新蓝海
下一篇:车用图像传感器参数小议——动态范围

猜你喜欢

手机扫一扫添加微信

13594006930